最短OE脉波宽度及线性度
每个颜色超过1024个灰阶已经成为LED全彩显示屏的基本规格,为了表现更丰富的色彩,制造商们需要能够表现更多灰阶的驱动IC。而OE的最短脉波宽度及反应时间(tr / tf)决定了灰阶数的多寡。但是许多驱动IC往往为了缩短OE脉波宽度而牺牲了线性度,所谓线性度就是输入数据与输出亮度间的关系。例如图一中,的输出电压波形比OE脉波宽度还要来得短,其线性度关系如图二所示。很明显地可以看到,LED亮度与OE脉波宽度的设定不成正比,特别是在OE脉波宽度低于0.1us时,此时的线性度不佳。
目前市面上对于最短OE脉波宽度有许多不同的定义。有IC制造商将输出端可以反应的时间定义为最短OE脉波宽度,但仅仅这样的定义会忽略掉对于线性度的影响。因此还是需要加以实际量测线性度才能确保IC可以表现足够的灰阶数。
抑制输出突波
当LED驱动IC管脚关闭瞬间产生的电压突波,经常导致IC损坏,这也影响了显示屏的信赖性。此一电压突波是来自于VLED 和OUTn之间的寄生电感所产生的,在图三及图四中说明了此突波的实验方式与结果。在此实验中,我们刻意加入一个电感L1以仿真实际电路中的寄生电感,并勾取图三中CH1~CH3三个节点上的电压波形以示波器观察,其波形如图四所示。从图示中可以看到在输出管脚(CH3)上的电压达到26.6V之高,远高于驱动IC的耐压(17V)。
突波的电压值可以透过以下公式加以计算:
V = L x di / dt
V 是寄生电感所产生的突波电压,L是寄生电感感值,di / dt 是切换瞬间的电流变化率。
有三种方式可以消除或抑制电压突波,第一种方法是减少寄生电感,同时因为VLED在线的突波也会累积到VOUT上面,电源线与每个输出管脚的线路必须尽可能地缩短。前述提到的均匀配置的分布式电容也可以减少VLED及VOUT的突波。
第二种方法是降低输出管脚开关切换速度。由前述公式可知,切换速度(tr /tf)太快的驱动IC会导致突波过高,因此选择切换速度适中且够用的驱动IC即可。
第三种方法是将输出突波加以分散,可以选择输出管脚间具有交错时间迟滞功能的驱动IC,避免所有的输出管脚同时切换,这种方法可以减少不同管脚间的突波透过电源线互相迭加而升高的问题。
结论
妥善选择驱动IC并设计电路板线路可以帮助显示屏制造商改善显示屏的灰阶与信赖性,一般的驱动IC产品其实可提供客户兼顾反应速度与信赖性的平衡选择,客户可以依自己对于灰阶的需求选择合适的IC。
Fig. 1 OE脉波宽度与输出电压波形之间的关系
Fig. 2 LED亮度与OE脉波宽度的关系
Fig. 3 The circuit of overshoot experiment
Fig. 4 The waveforms of different nodes on PCB